Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Neuroreport ; 35(6): 413-420, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526943

Motor imagery is a cognitive process involving the simulation of motor actions without actual movements. Despite the reported positive effects of motor imagery training on motor function, the underlying neurophysiological mechanisms have yet to be fully elucidated. Therefore, the purpose of the present study was to investigate how sustained tonic finger-pinching motor imagery modulates sensorimotor integration and corticospinal excitability using short-latency afferent inhibition (SAI) and single-pulse transcranial magnetic stimulation (TMS) assessments, respectively. Able-bodied individuals participated in the study and assessments were conducted under two experimental conditions in a randomized order between participants: (1) participants performed motor imagery of a pinch task while observing a visual image displayed on a monitor (Motor Imagery), and (2) participants remained at rest with their eyes fixed on the monitor displaying a cross mark (Control). For each condition, sensorimotor integration and corticospinal excitability were evaluated during sustained tonic motor imagery in separate sessions. Sensorimotor integration was assessed by SAI responses, representing inhibition of motor-evoked potentials (MEPs) in the first dorsal interosseous muscle elicited by TMS following median nerve stimulation. Corticospinal excitability was assessed by MEP responses elicited by single-pulse TMS. There was no significant difference in the magnitude of SAI responses between motor imagery and Control conditions, while MEP responses were significantly facilitated during the Motor Imagery condition compared to the Control condition. These findings suggest that motor imagery facilitates corticospinal excitability, without altering sensorimotor integration, possibly due to insufficient activation of the somatosensory circuits or lack of afferent feedback during sustained tonic motor imagery.


Fingers , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Fingers/physiology , Hand/physiology , Reaction Time/physiology , Median Nerve/physiology , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation , Pyramidal Tracts/physiology , Electromyography , Imagination/physiology
2.
Artif Organs ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436108

BACKGROUND: Neuromuscular electrical stimulation (NMES) can generate muscle contractions and elicit excitability of neural circuits. However, the optimal stimulation frequency for effective neuromodulation remains unclear. METHODS: Eleven able-bodied individuals participated in our study to examine the effects of: (1) low-frequency NMES at 25 Hz, (2) high-frequency NMES at 100 Hz; and (3) mixed-frequency NMES at 25 and 100 Hz switched every second. NMES was delivered to the right tibialis anterior (TA) muscle for 1 min in each condition. The order of interventions was pseudorandomized between participants with a washout of at least 15 min between conditions. Spinal reflexes were elicited using single-pulse transcutaneous spinal cord stimulation applied over the lumbar enlargement to evoke responses in multiple lower-limb muscles bilaterally and maximum motor responses (Mmax ) were elicited in the TA muscle by stimulating the common peroneal nerve to assess fatigue at the baseline and immediately, 5, 10, and 15 min after each intervention. RESULTS: Our results showed that spinal reflexes were significantly inhibited immediately after the mixed-frequency NMES, and for at least 15 min in follow-up. Low-frequency NMES inhibited spinal reflexes 5 min after the intervention, and also persisted for at least 10 min. These effects were present only in the stimulated TA muscle, while other contralateral and ipsilateral muscles were unaffected. Mmax responses were not affected by any intervention. CONCLUSIONS: Our results indicate that even a short-duration (1 min) NMES intervention using low- and mixed-frequency NMES could inhibit spinal reflex excitability of the TA muscle without inducing fatigue.

3.
J Neural Eng ; 20(5)2023 09 26.
Article En | MEDLINE | ID: mdl-37714143

Objective. Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) could excite the central nervous system to enhance upper limb motor recovery. Our current study assessed the effectiveness of motor and prefrontal cortical activity-based BCI-FES to help elucidate the underlying neuromodulation mechanisms of this neurorehabilitation approach.Approach. The primary motor cortex (M1) and prefrontal cortex (PFC) BCI-FES interventions were performed for 25 min on separate days with twelve non-disabled participants. During the interventions, a single electrode from the contralateral M1 or PFC was used to detect event-related desynchronization (ERD) in the calibrated frequency range. If the BCI system detected ERD within 15 s of motor imagery, FES activated wrist extensor muscles. Otherwise, if the BCI system did not detect ERD within 15 s, a subsequent trial was initiated without FES. To evaluate neuromodulation effects, corticospinal excitability was assessed using single-pulse transcranial magnetic stimulation, and cortical excitability was assessed by motor imagery ERD and resting-state functional connectivity before, immediately, 30 min, and 60 min after each intervention.Main results. M1 and PFC BCI-FES interventions had similar success rates of approximately 80%, while the M1 intervention was faster in detecting ERD activity. Consequently, only the M1 intervention effectively elicited corticospinal excitability changes for at least 60 min around the targeted cortical area in the M1, suggesting a degree of spatial localization. However, cortical excitability measures did not indicate changes after either M1 or PFC BCI-FES.Significance. Neural mechanisms underlying the effectiveness of BCI-FES neuromodulation may be attributed to the M1 direct corticospinal projections and/or the closer timing between ERD detection and FES, which likely enhanced Hebbian-like plasticity by synchronizing cortical activation detected by the BCI system with the sensory nerve activation and movement related reafference elicited by FES.


Brain , Prefrontal Cortex , Humans , Central Nervous System , Stereotaxic Techniques , Electric Stimulation
4.
Neurosci Lett ; 814: 137443, 2023 09 25.
Article En | MEDLINE | ID: mdl-37591357

Postural sway during quiet stance often exhibits a repetition of micro-fall and the subsequent micro-recovery. The classical view -that the quiet bipedal stance is stabilized by the ankle joint stiffness- has been challenged by paradoxical non-spring-like behaviors of calf muscles: gastrocnemius muscles are shortened and then lengthened, respectively, during the micro-fall and the micro-recovery. Here, we examined EEG based brain activity during quiet stance, and identified desynchronization and synchronization of beta oscillations that were associated, respectively, with the micro-fall and the micro-recovery. Based on a widely accepted scenario for beta-band desynchronization during movement and post-movement rebound in the control of discrete voluntary movement, our results reveal that the beta rebound can be considered as a manifestation of stop command to punctuate the motor control for every fall-recovery cycle. Namely, cortical interventions to the automatic postural control are discrete, rather than continuous modulations. The finding is highly compatible with the intermittent control model, rather than the stiffness control model.


Ankle , Movement , Movement/physiology , Ankle/physiology , Ankle Joint/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology
5.
Neuromodulation ; 26(8): 1612-1621, 2023 Dec.
Article En | MEDLINE | ID: mdl-35088740

OBJECTIVES: Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) has been used in rehabilitation for improving hand motor function. However, mechanisms of improvements are still not well understood. The objective of this study was to investigate how BCI-controlled FES affects hand muscle corticospinal excitability. MATERIALS AND METHODS: A total of 12 healthy young adults were recruited in the study. During BCI calibration, a single electroencephalography channel from the motor cortex and a frequency band were chosen to detect event-related desynchronization (ERD) of cortical oscillatory activity during kinesthetic wrist motor imagery (MI). The MI-based BCI system was used to detect active states on the basis of ERD activity in real time and produce contralateral wrist extension movements through FES of the extensor carpi radialis (ECR) muscle. As a control condition, FES was used to generate wrist extension at random intervals. The two interventions were performed on separate days and lasted 25 minutes. Motor evoked potentials (MEPs) in ECR (intervention target) and flexor carpi radialis (FCR) muscles were elicited through single-pulse transcranial magnetic stimulation of the motor cortex to compare corticospinal excitability before (pre), immediately after (post0), and 30 minutes after (post30) the interventions. RESULTS: After the BCI-FES intervention, ECR muscle MEPs were significantly facilitated at post0 and post30 time points compared with before the intervention (pre), whereas there were no changes in the FCR muscle corticospinal excitability. Conversely, after the random FES intervention, both ECR and FCR muscle MEPs were unaffected compared with before the intervention (pre). CONCLUSIONS: Our results demonstrated evidence that BCI-FES intervention could elicit muscle-specific short-term corticospinal excitability facilitation of the intervention targeted (ECR) muscle only, whereas randomly applied FES was ineffective in eliciting any changes. Notably, these findings suggest that associative cortical and peripheral activations during BCI-FES can effectively elicit targeted muscle corticospinal excitability facilitation, implying possible rehabilitation mechanisms.


Motor Cortex , Muscle, Skeletal , Humans , Young Adult , Muscle, Skeletal/physiology , Hand , Electroencephalography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Electric Stimulation/methods , Transcranial Magnetic Stimulation/methods , Electromyography
6.
J Biomech ; 145: 111382, 2022 12.
Article En | MEDLINE | ID: mdl-36446310

This study aimed to explore the single-legged landing kinematics that could lead to increase or decrease in the risk of anterior cruciate ligament (ACL) injury. Immediate pre-impact kinematics at the single-legged landing from 33 healthy young female handball players were evaluated. Thereafter, two-year follow-up for ACL injury incidence was conducted, in which six new ACL injuries in non-dominant leg were registered. The evaluation of pre-impact kinematics across participants was performed first by the principal component analysis to decompose them into the kinematic components (KCs), and then by the linear discrimination analysis (LDA) for a set of KC-scores to obtain important KCs for discriminating injured and non-injured legs. The result of LDA showed that the combination of second major KC (knee flexion/extension angle and angular velocity) and some minor KCs such as torso medial/lateral leaning accurately discriminated the injured and non-injured legs with the error rate of 12.5%. To examine the mechanisms of this discriminative ability, we generated hypothetical pre-impact kinematics in the subspaces spanned by eigenvectors of multiple KCs, and examined relationships between pre-impact kinematics and the corresponding knee valgus torque predicted by the motion-equation-based model. The result showed that the second major KC and the minor KCs representing torso medial/lateral leaning and/or hip adduction/abduction angle, which contributed in LDA to discriminating injured legs, also significantly affected the frontal-plane knee loading patterns. These findings suggested that KC-based postural characterization of the pre-impact landing kinematics and the motion-equation-based knee stress quantification possibly explain the future ACL injury risks of female athletes.


Anterior Cruciate Ligament Injuries , Sports , Female , Humans
7.
Artif Organs ; 46(10): 2015-2026, 2022 Oct.
Article En | MEDLINE | ID: mdl-35642297

BACKGROUND: Cervical transcutaneous spinal cord stimulation (tSCS) is a rehabilitation tool which has been used to promote upper-limb motor recovery after spinal cord injury. Importantly, optimizing sensory fiber activation at specific spinal segments could enable activity-dependent neuromodulation during rehabilitation. METHODS: An anatomically realistic cervical tSCS computational model was used to analyze the activation of α-motor and Aα-sensory fibers at C7 and C8 spinal segments using nine cathode electrode configurations. Specifically, the cathode was simulated at three vertebral level positions: C6, C7, and T1; and in three sizes: 5.0 × 5.0, 3.5 × 3.5, and 2.5 × 2.5 cm2 , while the anode was on the anterior neck. Finite element method was used to estimate the electric potential distribution along α-motor and Aα-sensory fibers, and computational models were applied to simulate the fiber membrane dynamics during tSCS. The minimum stimulation intensity necessary to activate the fibers (activation threshold) was estimated and compared across cathode configurations in an effort to optimize sensory fiber activation. RESULTS: Our results showed that nerve fibers at both C7 and C8 spinal segments were recruited at lower stimulation intensities when the cathode was positioned over the C7 or T1 vertebra compared with the C6 position. Sensory fibers were activated at lower stimulation intensities using smaller electrodes, which could also affect the degree of nerve fiber activation across different positions. Importantly, Aα-sensory fibers were consistently recruited before α-motor fibers. CONCLUSIONS: These results imply that cathode positioning could help optimize preferential activation of hand muscles during cervical tSCS.


Spinal Cord Stimulation , Electric Stimulation , Electrodes , Muscle, Skeletal/physiology , Spinal Cord/physiology , Spinal Cord Stimulation/methods , Spine
8.
Article En | MEDLINE | ID: mdl-35709114

Functional electrical stimulation (FES) can be used to initiate lower limb muscle contractions and has been widely applied in gait rehabilitation. Establishing the correct timing of FES activation during each phase of the gait (walking) cycle remains challenging as most FES systems rely on open-loop control, whereby the controller receives no feedback about joint kinematics and instead relies on predetermined/timed muscle stimulation. The objective of this study was to develop and validate a closed-loop FES-based control solution for gait rehabilitation using a finite state machine (FSM) model. A two-phased study approach was taken: (1) Experimentally-Informed Study: A neuromuscular-derived FSM model was developed to drive closed-loop FES-based control for gait rehabilitation. The finite states were determined using electromyography and joint kinematics data of 12 non-disabled adults, collected during treadmill walking. The gait cycles were divided into four states, namely: swing-to-stance, push off, pre-swing, and toe up. (2) Simulation Study: A closed-loop FES-based control solution that employed the resulting FSM model, was validated through comparisons of neuro-musculo-skeletal computer simulations of impaired versus healthy gait. This closed-loop controller yielded steadier simulated impaired gait, in comparison to an open-loop alternative. The simulation results confirmed that accurate timing of FES activation during the gait cycle, as informed by kinematics data, is important to natural gait retraining. The closed-loop FES-based solution, introduced in this study, contributes to the repository of gait rehabilitation control options and offers the advantage of being simplistic to implement. Furthermore, this control solution is expected to integrate well with powered exoskeleton technologies.


Electric Stimulation Therapy , Adult , Electric Stimulation , Electric Stimulation Therapy/methods , Electromyography , Gait/physiology , Humans , Walking/physiology
9.
Front Hum Neurosci ; 16: 842883, 2022.
Article En | MEDLINE | ID: mdl-35634205

Involuntary eye movement during gaze (GZ) fixation, referred to as fixational eye movement (FEM), consists of two types of components: a Brownian motion like component called drifts-tremor (DRT) and a ballistic component called microsaccade (MS) with a mean saccadic amplitude of about 0.3° and a mean inter-MS interval of about 0.5 s. During GZ fixation in healthy people in an eccentric position, typically with an eccentricity more than 30°, eyes exhibit oscillatory movements alternating between centripetal drift and centrifugal saccade with a mean saccadic amplitude of about 1° and a period in the range of 0.5-1.0 s, which has been known as the physiological gaze-evoked nystagmus (GEN). Here, we designed a simple experimental paradigm of GZ fixation on a target shifted horizontally from the front-facing position with fewer eccentricities. We found a clear tendency of centripetal DRT and centrifugal MS as in GEN, but with more stochasticity and with slower drift velocity compared to GEN, even during FEM at GZ positions with small eccentricities. Our results showed that the target shift-dependent balance between DRT and MS achieves the GZ bounded around each of the given targets. In other words, GZ relaxes slowly with the centripetal DRT toward the front-facing position during inter-MS intervals, as if there always exists a quasi-stable equilibrium posture in the front-facing position, and MS actions pull GZ intermittently back to the target position in the opposite direction to DRT.

10.
J Neural Eng ; 19(3)2022 05 17.
Article En | MEDLINE | ID: mdl-35472720

Objective. Cervical transcutaneous spinal cord stimulation (tSCS) is a promising technology that can support motor function recovery of upper-limbs after spinal cord injury. Its efficacy may depend on the ability to recruit sensory afferents, conveying excitatory inputs onto motoneurons. Therefore, understanding its physiological mechanisms is critical to accelerate its development towards clinical applications. In this study, we used an anatomically realistic cervical tSCS computational model to compare α-motor, Aα-sensory, and Aß-sensory fiber activation thresholds and activation sites.Approach. We developed a 3D geometry of the cervical body and tSCS electrodes with a cathode centred at the C7 spinous process and an anode placed over the anterior neck. The geometrical model was used to estimate the electric potential distributions along motor and sensory fiber trajectories at the C7 spinal level using a finite element method. We implemented dedicated motor and sensory fiber models to simulate the α-motor and Aα-sensory fibers using 12, 16, and 20 µm diameter fibers, and Aß-sensory fibers using 6, 9, and 12 µm diameter fibers. We estimated nerve fiber activation thresholds and sites for a 2 ms monophasic stimulating pulse and compared them across the fiber groups.Main results. Our results showed lower activation thresholds of Aα- and Aß-sensory fibers compared with α-motor fibers, suggesting preferential sensory fiber activation. We also found no differences between activation thresholds of Aα-sensory and large Aß-sensory fibers, implying their co-activation. The activation sites were located at the dorsal and ventral root levels.Significance. Using a realistic computational model, we demonstrated preferential activation of dorsal root Aα- and Aß-sensory fibers compared with ventral root α-motor fibers during cervical tSCS. These findings suggest high proprioceptive and cutaneous contributions to neural activations during cervical tSCS, which inform the underlying mechanisms of upper-limb functional motor recovery.


Spinal Cord Injuries , Spinal Cord Stimulation , Electric Stimulation/methods , Humans , Motor Neurons , Spinal Cord/physiology
11.
Front Neurosci ; 15: 693861, 2021.
Article En | MEDLINE | ID: mdl-34489624

Functional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical changes after FEST and weather it can improve motor function after traumatic brain injury (TBI). Our study examined cortical changes and motor improvements in one male participant with chronic TBI suffering from mild motor impairment affecting the right upper-limb during 3-months of FEST and during 3-months follow-up. In total, 36 sessions of FEST were applied to enable upper-limb grasping and reaching movements. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), indicating cortical and/or subcortical inhibition after each intervention. At the same time, no changes in motor evoked potentials (MEPs) were observed. Long-term assessments showed increased MEP corticospinal excitability after 12-weeks of FEST, which seemed to remain during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, functional magnetic resonance imaging (fMRI) data showed M1 activations increased during hand grip and finger pinch tasks after 12-weeks of FEST, while gradual reduction of activity compared to after the intervention was seen during follow-ups. Widespread changes were seen not only in the M1, but also sensory, parietal rostroventral, supplementary motor, and premotor areas in both contralateral and ipsilateral hemispheres, especially during the finger pinch task. Drawing test performance showed improvements after the intervention and during follow-ups. Our findings suggest that task-specific and repetitive FEST can effectively increase cortical activations by integrating voluntary motor commands and sensorimotor network through functional electrical stimulation (FES). Overall, our results demonstrated cortical re-organization in an individual with chronic TBI after FEST.

12.
J Clin Med ; 10(16)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34441927

Cervical transcutaneous spinal cord stimulation (tSCS) has been utilized in applications for improving upper-limb sensory and motor function in patients with spinal cord injury. Although therapeutic effects of continuous cervical tSCS interventions have been reported, neurophysiological mechanisms remain largely unexplored. Specifically, it is not clear whether sub-threshold intensity and 10-min duration continuous cervical tSCS intervention can affect the central nervous system excitability. Therefore, the purpose of this study was to investigate effects of sub-motor-threshold 10-min continuous cervical tSCS applied at rest on the corticospinal and spinal reflex circuit in ten able-bodied individuals. Neurophysiological assessments were conducted to investigate (1) corticospinal excitability via transcranial magnetic stimulation applied on the primary motor cortex to evoke motor-evoked potentials (MEPs) and (2) spinal reflex excitability via single-pulse tSCS applied at the cervical level to evoke posterior root muscle (PRM) reflexes. Measurements were recorded from multiple upper-limb muscles before, during, and after the intervention. Our results showed that low-intensity and short-duration continuous cervical tSCS intervention applied at rest did not significantly affect corticospinal and spinal reflex excitability. The stimulation duration and/or intensity, as well as other stimulating parameters selection, may therefore be critical for inducing neuromodulatory effects during cervical tSCS.

13.
J Appl Physiol (1985) ; 131(2): 746-759, 2021 08 01.
Article En | MEDLINE | ID: mdl-34138648

Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remain unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, postactivation depression was confirmed with tSCS paired pulses (50-ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared with the other vertebral levels, whereas there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, whereas there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.NEW & NOTEWORTHY We examined selectivity and excitability of motor activation in multiple upper-limb muscles during cervical transcutaneous spinal cord stimulation with different cathode and anode configurations. Hand muscles were more activated when the cathode was configured over the T1 vertebra compared with C6 and C7 locations. Higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles. Finally, configuration of anode over anterior neck elicited larger responses compared with other configurations.


Spinal Cord Stimulation , Electric Stimulation , Electromyography , Hand , Humans , Muscle, Skeletal , Spinal Cord , Upper Extremity
14.
Front Syst Neurosci ; 15: 660434, 2021.
Article En | MEDLINE | ID: mdl-34093142

Movement related beta band cortical oscillations, including beta rebound after execution and/or suppression of movement, have drawn attention in upper extremity motor control literature. However, fewer studies focused on beta band oscillations during postural control in upright stance. In this preliminary study, we examined beta rebound and other components of electroencephalogram (EEG) activity during perturbed upright stance to investigate supraspinal contributions to postural stabilization. Particularly, we aimed to clarify the timing and duration of beta rebound within a non-sustained, but long-lasting postural recovery process that occurs more slowly compared to upper extremities. To this end, EEG signals were acquired from nine healthy young adults in response to a brief support-surface perturbation, together with the center of pressure, the center of mass and electromyogram (EMG) activities of ankle muscles. Event-related potentials (ERPs) and event-related spectral perturbations were computed from EEG data using the perturbation-onset as a triggering event. After short-latency (<0.3 s) ERPs, our results showed a decrease in high-beta band oscillations (event-related desynchronization), which was followed by a significant increase (event-related synchronization) in the same band, as well as a decrease in theta band oscillations. Unlike during upper extremity motor tasks, the beta rebound in this case was initiated before the postural recovery was completed, and sustained for as long as 3 s with small EMG responses for the first half period, followed by no excessive EMG activities for the second half period. We speculate that those novel characteristics of beta rebound might be caused by slow postural dynamics along a stable manifold of the unstable saddle-type upright equilibrium of the postural control system without active feedback control, but with active monitoring of the postural state, in the framework of the intermittent control.

15.
Neurosci Lett ; 755: 135907, 2021 06 11.
Article En | MEDLINE | ID: mdl-33887382

Corticospinal excitability in humans can be facilitated during imagination and/or observation of upper-limb motor tasks. However, it remains unclear to what extent facilitation levels may differ from those elicited during execution of the same tasks. Twelve able-bodied individuals were recruited in this study. Motor evoked potentials (MEPs) in extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles were elicited through transcranial magnetic stimulation of the primary motor cortex during: (i) rest; (ii) wrist extension; and (iii) wrist flexion. Responses were compared between: (1) motor imagery combined with virtual action observation (MI + AO; first-person virtual wrist movements shown on a computer display, while participants remained at rest and imagined these movements); and (2) motor execution (ME; participants extended or flexed their wrist). During MI + AO, ECR MEPs were facilitated during the extension phase but not the flexion phase, while FCR MEPs were facilitated during the flexion phase but not extension phase, compared to rest. During the ME condition, same, but greater, modulations were shown as those during MI + AO, while background muscle activities were similar in the rest phase as during extension and flexion phase in the MI + AO condition. Our results demonstrated that kinesthetic MI that included imagination and observation of virtual hands can elicit phase-dependent muscles-specific corticospinal facilitation of wrist muscles, consistent to those during actual hand extension and flexion. Moreover, we showed that MI + AO can contribute considerably to the overall corticospinal facilitation (∼20 % of ME) even without muscle contractions. These findings support utility of computer graphics-based motor imagery, which may have implications for rehabilitation and development of brain-computer interfaces.


Evoked Potentials, Motor/physiology , Hand/physiology , Imagination/physiology , Motor Cortex/physiology , Movement/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Adult , Electromyography/methods , Humans , Male , Photic Stimulation/methods , Random Allocation , Transcranial Magnetic Stimulation/methods , Upper Extremity/physiology , Young Adult
16.
J Biomech ; 116: 110211, 2021 02 12.
Article En | MEDLINE | ID: mdl-33429073

This study aimed to validate a simple dynamic model of single-leg drop-landing to develop a methodological foundation for investigating mechanistic causes of anterior cruciate ligament (ACL) injury and to explore mechanical associations between knee valgus torque and landing kinematics that are considered clinically as a high-risk landing posture for the injury. A triple-inverted-pendulum model in three-dimensional space, composed of rigid-links of head-arms-trunk (HAT), thigh and shank, was employed. We derived causal relationships that can predict post-impact kinetics, including impact ground reaction forces (GRFs) and corresponding knee joint torques from a given body-kinematics immediately before impact, based on an assumption of a completely inelastic collision between a landing foot (the distal end-point of the shank in the model) and the ground. The concordance correlation coefficient (CCC) analysis revealed that our model can achieve an acceptable agreement between experimentally measured and model-predicted impact GRFs and corresponding knee joint torques. The 95% one-tailed lower confidence limit of CCC of vertical, mediolateral GRFs and the varus/valgus torque were 0.665>ρc,a=0.643,0.786>ρc,a=0.758 and 0.531>ρc,a=0.508, respectively, for the least acceptable values ρc,a. Using this model, effects of three types of hypothetical pre-impact kinematics with modulated (i) medial/lateral leaning HAT angle, (ii) forward/backward HAT tilt-angle, and (iii) knee flexion/extension angle on the impact GRF and corresponding knee joint torque were evaluated. We showed that the smaller knee flexion and the greater HAT leaning toward the landing-limb-side, the larger the knee valgus torque is generated, as a mechanical consequence between the specific pre-impact kinematics and the knee loading associated with the risk of ACL injury. Further exploration of hypothetical kinematics using the model in the future work might contribute to identifying the risky landing kinematics beyond experimental limitations.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Injuries/etiology , Biomechanical Phenomena , Humans , Kinetics , Knee , Knee Joint
17.
Chaos ; 30(11): 113140, 2020 Nov.
Article En | MEDLINE | ID: mdl-33261318

Postural instability is one of the major symptoms of Parkinson's disease. Here, we assimilated a model of intermittent delay feedback control during quiet standing into postural sway data from healthy young and elderly individuals as well as patients with Parkinson's disease to elucidate the possible mechanisms of instability. Specifically, we estimated the joint probability distribution of a set of parameters in the model using the Bayesian parameter inference such that the model with the inferred parameters can best-fit sway data for each individual. It was expected that the parameter values for three populations would distribute differently in the parameter space depending on their balance capability. Because the intermittent control model is parameterized by a parameter associated with the degree of intermittency in the control, it can represent not only the intermittent model but also the traditional continuous control model with no intermittency. We showed that the inferred parameter values for the three groups of individuals are classified into two major groups in the parameter space: one represents the intermittent control mostly for healthy people and patients with mild postural symptoms and the other the continuous control mostly for some elderly and patients with severe postural symptoms. The results of this study may be interpreted by postulating that increased postural instability in most Parkinson's patients and some elderly persons might be characterized as a dynamical disease.


Parkinson Disease , Aged , Bayes Theorem , Feedback , Humans , Postural Balance
18.
Biomed Eng Online ; 19(1): 81, 2020 Nov 04.
Article En | MEDLINE | ID: mdl-33148270

Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.


Brain-Computer Interfaces , Electric Stimulation Therapy/methods , Muscles , Nervous System , Prostheses and Implants , Rehabilitation/methods , Humans
19.
Biol Cybern ; 114(1): 95-111, 2020 02.
Article En | MEDLINE | ID: mdl-31960137

The 1/f-like gait cycle variability, characterized by temporal changes in stride-time intervals during steady-state human walking, is a well-documented gait characteristic. Such gait fractality is apparent in healthy young adults, but tends to disappear in the elderly and patients with neurological diseases. However, mechanisms that give rise to gait fractality have yet to be fully clarified. We aimed to provide novel insights into neuro-mechanical mechanisms of gait fractality, based on a numerical simulation model of biped walking. A previously developed heel-toe footed, seven-rigid-link biped model with human-like body parameters in the sagittal plane was implemented and expanded. It has been shown that the gait model, stabilized rigidly by means of impedance control with large values of proportional (P) and derivative (D) gains for a linear feedback controller, is destabilized only in a low-dimensional eigenspace, as P and D decrease below and even far below critical values. Such low-dimensional linear instability can be compensated by impulsive, phase-dependent actions of nonlinear controllers (phase resetting and intermittent controllers), leading to the flexible walking with joint impedance in the model being as small as that in humans. Here, we added white noise to the model to examine P-value-dependent stochastic dynamics of the model for small D-values. The simulation results demonstrated that introduction of the nonlinear controllers in the model determined the fractal features of gait for a wide range of the P-values, provided that the model operates near the edge of stability. In other words, neither the model stabilized only by pure impedance control even at the edge of linear stability, nor the model stabilized by specific nonlinear controllers, but with P-values far inside the stability region, could induce gait fractality. Although only limited types of controllers were examined, we suggest that the impulsive nonlinear controllers and criticality could be major mechanisms for the genesis of gait fractality.


Biomechanical Phenomena/physiology , Computer Simulation , Gait/physiology , Models, Theoretical , Humans , Walking/physiology
20.
Front Comput Neurosci ; 13: 16, 2019.
Article En | MEDLINE | ID: mdl-31024281

Stabilization of the CIP (Cart Inverted Pendulum) is an analogy to stick balancing on a finger and is an example of unstable tasks that humans face in everyday life. The difficulty of the task grows exponentially with the decrease of the length of the stick and a stick length of 32 cm is considered as a human limit even for well-trained subjects. Moreover, there is a cybernetic limit related to the delay of the multimodal sensory feedback (about 230 ms) that supports a feedback stabilization strategy. We previously demonstrated that an intermittent-feedback control paradigm, originally developed for modeling the stabilization of upright standing, can be applied with success also to the CIP system, but with values of the critical parameters far from the limiting ones (stick length 50 cm and feedback delay 100 ms). The intermittent control paradigm is based on the alternation of on-phases, driven by a proportional/derivative delayed feedback controller, and off-phases, where the feedback is switched off and the motion evolves according to the intrinsic dynamics of the CIP. In its standard formulation, the switching mechanism consists of a simple threshold operator: the feedback control is switched off if the current (delayed) state vector is closer to the stable than to the unstable manifold of the off-phase and is switched on in the opposite case. Although this simple formulation is effective for explaining upright standing as well as CIP balancing, it fails in the most challenging configuration of the CIP. In this work we propose a modification of the standard intermittent control policy that focuses on the explicit selection of switching times and is based on the phase reset of the estimated state vector at each switching time and on the simulation of an approximated internal model of CIP dynamics. We demonstrate, by simulating the modified intermittent control policy, that it can match the limits of human performance, while operating near the edge of instability.

...